

Trends in PV Applications

Gaëtan Masson, IEA PVPS Task 1 Manager– Becquerel Institute

Key findings from the 2024 Trends Report Webinar

Technology Collaboration Programme

Who am I

- Gaëtan Masson
- Task 1 Manager since 2013

<u>My PV story</u>:

- In the PV industry since 2009
- Becquerel Institute since 2014
- ESMC co-chairman (European Solar Manufacturing Association)
- EDORA Board member (Belgian RE Association)
- And more...

THE TRENDS REPORT

Published for the first time in 1995

Comprehensive report about... Trends in PV applications Technology Markets Policies Industry Impact on the society including economics Climate change And more

1 Market dynamics

Global PV Markets: how much was installed in 2023

FIGURE 2.3: EVOLUTION OF ANNUAL PV INSTALLATIONS IN MAJOR MARKETS

SOURCE IEA PVPS 8 OTHERS

1 Market dynamics

Some statistics

EVOLUTION OF ANNUAL PV IN MAJOR MARKETS

EVOLUTION OF NEW ANNUAL CAPACITY IN MAJOR MARKETS 2022 - 2023 163% 113% 123% 109% **Uneven growth** 49% 47% 34% 15% 14% 6% 8% 1% -2% -5% -28% 米. **S ***** ۲ •

EVOLUTION OF CUMULATIVE PV INSTALLATIONS

FIGURE 2.1: EVOLUTION OF CUMULATIVE PV INSTALLATIONS

DC

SOURCE IEA PVPS & OTHERS

EVOLUTION OF REGIONAL PV INSTALLATIONS

FIGURE 2.7: EVOLUTION OF REGIONAL PV INSTALLATIONS

ANNUAL SHARE OF CENTRALISED AND DISTRIBUTED GRID-CONNECTED INSTALLATIONS 2013-2023

FIGURE 2.9: ANNUAL SHARE OF CENTRALIZED AND DISTRIBUTED GRID-CONNECTED INSTALLATIONS 2013-2023

SOURCE IEA PVPS & OTHERS

PVPS

ANNUAL GRID-CONNECTED CENTRALISED AND DISTRIBUTED PV INSTALLATIONS BY REGION IN 2023

FIGURE 2.12: ANNUAL GRID-CONNECTED CENTRALIZED AND DISTRIBUTED PV INSTALLATIONS BY REGION IN 2023

YEARLY PV INSTALLATION, MODULE PV PRODUCTION AND MODULE PRODUCTION CAPACITY 2013-2023 (GW)

FIGURE 4.7: YEARLY PV INSTALLATION, PV PRODUCTION AND PRODUCTION CAPACITY 2013-2023 (GW)

SOURCE IEA PVPS, RTS CORPORATION

FIGURE 5.1: CO2 EMISSIONS AVOIDED BY PV

PV penetration rate > 10% 1 0.9 Grid mix CO2 emission factor (MT CO2eq/TWh) Kazakhstan 1.71 0.8 South Africa : 8.6 India 100 AVOIDED CO2 EMISSIONS Saudi Arabia 3.48 0.7 [MT CO2] Chinese Taipei ; 8 Poland 10.5 Morocco.1.74 Malaysia. 2.5 China ; 499 0.6 Asia Pacific Australia 2 Philippines:1.4 Thailand; 6.9 Israel; 5.5 Egypt; 3.6 Mexico;8 The Americas 0,5 Vietnam:10 apan; 4 UAE:5.8 Europe South Korea: 13 Pakistan 3.0 Türkiye;9 0.4 Middle East and Africa USA; 85 Greece ; 2.9 Italy: 9 Germany ;20 0.3 Netherlands 4.5 Chile .3.7 UK; 2.0 **CLIMATE CHANGE** 0.2 Spain ; 7 IMPACTS 0.1 Brazil 2.8 973 100 1 0 0 0 10 000 100 000 million tons of CO, CO2 emissions if PV replaces baseload power in all countries saved in 2023 * method changed from 2022; ----now assuming PV replaces

baseload generation

FIGURE 5.1: CO, EMISSIONS AVOIDED BY PV

CO2 emissions **if PV replaces peak power** in all countries CO2 emissions **if PV replaces baseload power** in all countries

- With high penetration rates PV is becoming a mainstay of electricity generation in many countries
- It is replacing baseload power, that may be the lowest CO₂ content of fossil energy mixes (as compared to peak power)
- It is reducing the CO2 content of electricity generation
- Most countries still have low penetration rates so the reality is somewhere between these number: methodology will be updated again next year

CO2 emissions **if PV replaces peak power** in all countries - If using methodology and energy mixes from Trends 2023

BUSINESS VALUE OF THE PV MARKET IN 2023

FIGURE 5.3: BUSINESS VALUE OF THE PV MARKET IN 2023 COMPARED TO GDP IN% IN 2023

400 Bn USD

PolySi

SOURCE IEA PVPS & OTHERS

Modules

Cells

Wafers

PVPS

CONTRIBUTION TO GLOBAL GDP OF PV IN 2023

FIGURE 5.4: CONTRIBUTION TO GLOBAL GDP OF PV BUSINESS VALUE AND ENERGY SECTOR INVESTMENTS

GLOBAL EMPLOYMENT IN PV PER COUNTRY

FIGURE 5.6: GLOBAL EMPLOYMENT IN PV PER COUNTRY

PVPS

INDICATIVE MODULE PRICES IN REPORTING COUNTRIES

FIGURE 6.3: INDICATIVE MODULE PRICES IN SELECTED REPORTING COUNTRIES

PVPS

PV CONTRIBUTION TO ELECTRICITY DEMAND 2023

FIGURE 7.1: PV CONTRIBUTION TO ELECTRICITY DEMAND 2023

SHARE OF RENEWABLE IN THE GLOBAL ELECTRICITY PRODUCTION IN 2023

FIGURE 7.2: SHARE OF RENEWABLE IN THE GLOBAL ELECTRICITY PRODUCTION IN 2023

SOURCE REN21, IEA PVPS

PV PENETRATION IN 2023

PVPS

8.3%

of Electricity demand

- PV is mostly generated close to consumption and has little transport and transformation losses
- Electricity productionis higher than demand to cover these losses

INFOGRAPHIC

CONCLUSIONS

- China's market has increased significantly in 2023 to absord overproduction
- PV penetration has reached 8.3% of the electricity consumption
- PV is becoming a central part of the global economy with 400Bn USD turnover
- Significant contribution to CO2 emission reduction
- Extremely low prices won't last since they endanger the whole PV industry
- The road to 1 TW per year is open

www.iea-pvps.org

Thank you for your attention

Gaëtan Masson, Task 1 <u>g.masson@iea-pvs.org</u>

g.masson@becquerelinstitute.eu

Technology Collaboration Programme